Monitoring & Collecting Data for a Pasture Program

Monitoring

To watch and check a situation over a period of time in order to discover something about it.

Things we might want to keep an eye on in a pasture program include:

- Plant germination, establishment and growth
- Pest and disease incidence and damage
- Impact of weather events
- Soil moisture
- Livestock health
- etc...

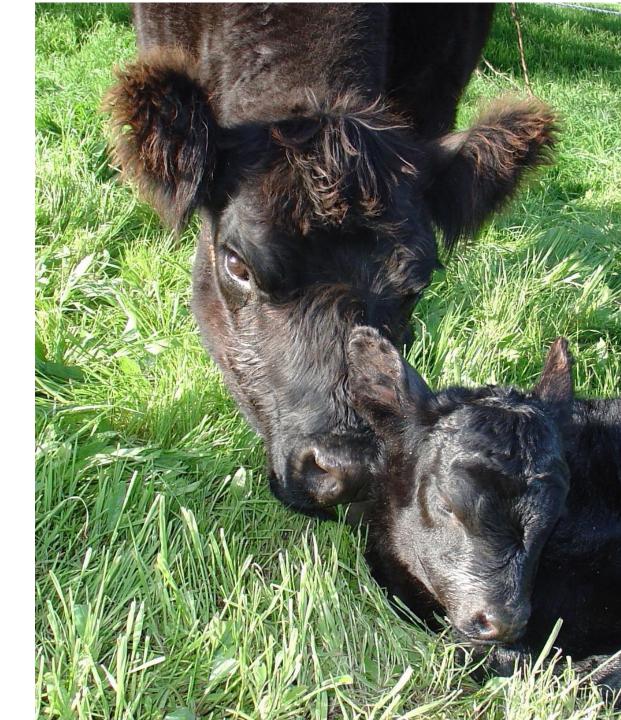
Data Collection

The process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes.

Why collect data in a pasture program?

- Determine pasture quantity and quality
- Assess soil function and fertility
- Identify issues and limiting factors compromising production
- Evaluate the outcomes of different practices
- Inform management decisions
- Track the progress of our operation

What type of data should we collect?


- DIY and laboratory options
- Relevance and benefit to our program
- Practical considerations
- Cost

Decide what data is worth collecting

When should we collect data?

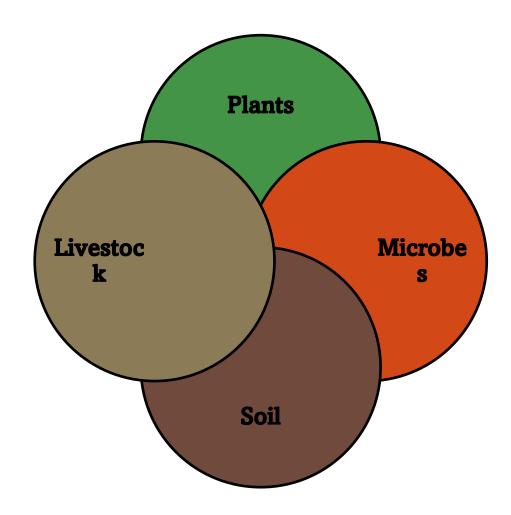
- Seasonal conditions
- Stages of growth
- Management implications

Establish a data collection schedule

Where we collect our data can be based on:

- Soil types
- Conditions
- Plant types
- Infrastructure
- Practices
- History

Choose appropriate locations

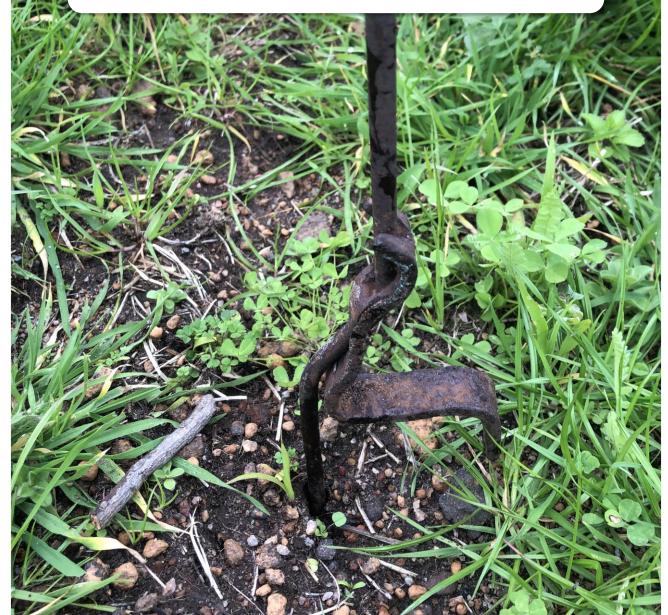

To collect good data you must:

- Make sure you have the right materials and equipment for the job
- Mark or record where you're collecting data
- Use reliable methodology
- Keep records diary, spreadsheets, files, photos...

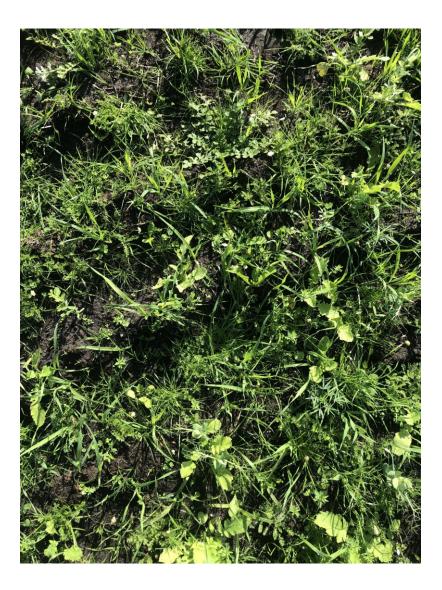
The Chicken and the Egg

What came first: healthy plants, active microbes, good soil or happy animals ?

Field Assessment of Pasture


Pasture Quality Indicators

- Maturity
- Dung Score
- Coverage
- Species Composition
- Plant Diversity
- Visual Plant Assessment
- Brix etc...


Pasture Maturity

Dung Score

Basal/Foliar Coverage

Species Composition and Plant Diversity

Species:

Radish, Oats, Vetch, Linseed, Crimson Cover, Field Peas, Lupins, Ryegrass, Mouse Ear Chickweed, Plantain, Chicory, Capeweed.

Families:

- BRASSICACEAE
- POACEAE
- FABACEAE
- LINACEAE
- CAROPHYLLACEAE
- PLANTAGINACEAE
- ASTERACEAE

Visual Plant Assessment

Brix etc...

Recording the Data

Pasture Quality Indicators

Location: Date:

	Pasture	Maturity				
Age		Stage of Growth				
Dung Score						
Characteristics	Descripton					
Consistency	-					
Form						
Moisture Content	Cove	×2.2.0				
Type of Coverage (Basal/Fol		erage % of Soil Covere	d			
	Type of coverage (basai) foliage) 7		~			
Species Composition						
Desirable Plant Species	Approx. %	Undesirable Plant Species	Approx. %			
	Plant D	iversity				
Plant Families		Approximate % of Each				
Possible Issues	Visal Plant Health					
Nutrient Deficiencies		Discription				
Growth Issues						
Physiological Issues						
Pest and Disease Attack	Briv P	eading				
Lovel (0, 22)		caulig				
Level (0-32)						
Dividing Line Definition						

Field Assessment of Microbial Activity

- Legume Nodulation
- Rhizosheath Development
- Beneficial Soil Fauna Earthworms, Springtails, Ants etc...
- Organic Matter Decomposition
- Dung Beetles

Nodulation

Rhizosheath Development

Beneficial Soil Fauna

Organic Matter Decomposition

Dung Beetle Activity

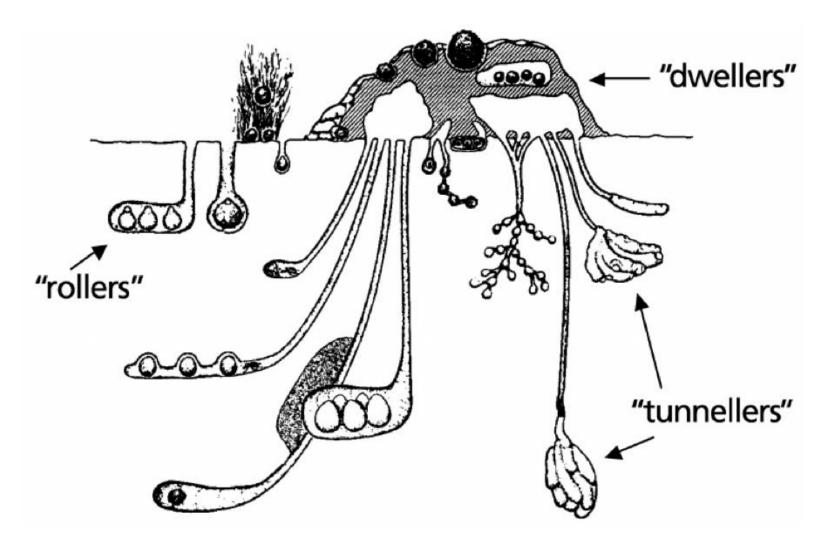


Photo Credit: Kevin Floate, Agriculture and Agri-food Canada, 2011.

Microbial Activity Indicators

Location:	Date:					
Legume Nodulation						
Total No. of Nodules						
Depth Nodulation						
Colouring Inside Nodules						
Rhizosheath Developr	nent (Young Plants)					
Plant Species	Approx % of Roots Covered					
Species	Amount					
Species Earthworms	Amount					
· · · · · ·	Amount					
Earthworms						
Earthworms Number of Other Species Litter Decor						
Earthworms Number of Other Species						
Earthworms Number of Other Species Litter Decor % Callico Strip Decomposed @1 Month	nposition					
Earthworms Number of Other Species Litter Decor % Callico Strip Decomposed @1 Month Visual Decomposition Activity	nposition					
Earthworms Number of Other Species Litter Decor % Callico Strip Decomposed @1 Month Visual Decomposition Activity Dung Be	nposition					

Field Assessment of Soil

Soil Health Indicators:

- Topsoil Depth and Colour
- Bulk Root Depth
- Structural Appearance
- Aggregate Stability
- pH
- Compaction
- Water Infiltration

Topsoil Depth & Colour

Root Depth

Structural Appearance

Aggregate Stability

PIPAG

non

Soil Compaction

Water Infiltration

Soil Health Indicators

Location:	Date:	
Topsoil Depth	and Colour	
Depth		
Colour		
Root D	epth	
Depth of Root Bulk		
Depth of Deepest Roots		
Structural A	ppearance	
% Crumbly, Fine, Round Aggregates		
% Large, Firm, Angular Clods		
% Loose Unstructured Soil		
Aggregate	Stability	
% Slaking @ 2hrs		
% Dispersion @ 20hrs		
Soil	рН	
Depth	рН	
Сотра	ction	
Depth of Threshold Changes		
Reading (PSI)		
Water Infi	Itration	
mm	minutes	

Interpreting the Data

?

Pasture Quality Assessment

Location:

Date:

Inicators	Parameters	Poor	Medium	Good
Pasture Maturity	Poor - Unestablished or Setting Seed Mediocre - Flowering Good - Established Vegetative Growth			
Dung Score	Poor - Sloppy or Hard and Dry Mediocre - Soft, Collapsed, Wet Good - Firm, Well Formed, Moist			
Basal Coverage (>12 weeks age)	Poor - Less Than 50% Mediocre - 50 to 75% Good - Above 75%			
Foliage Coverage (>12 weeks age)	Poor - Less Than 75% Mediocre - 75 to 90% Good - Above 90%			
Species Composition	Poor - Less Than 60% Desirable Mediocre - 60 to 90% Good - Above 90%			
Plant Diversity (number of families well represented)	Poor - 1 Mediocre - 2 or 3 Good - 4 or More			
Visual Plant Health	Poor - Multiple Issues Mediocre - 1 Issue Good - No Issues			
Brix Reading	Poor - Less Than 6 Mediocre - 6 - 12 Good - Above 12			

Score:

Percent:

Microbial Activity Assessment

Location:

Date:

Inicators	Parameters	Poor	Medium	Good
Legume Noulation	Legume Noulation Poor - Shallow, No Colour, <10 per Plant			
(applies to plants	Mediocre - Sparse, Pink, 10 - 20			
over 12 weeks old)	Good - Entire Root, Red, >20 per Plant			
Root Rhizosheaths	Poor - Most Roots Bare			
(young plants)	Mediocre - Most Roots Covered			
	Good - Roots Totally Covered			
Earthworms	Poor - Less Than 3			
(per 20cm cube of soil)	Mediocre - 3 to 5			
	Good - More Than 5			
Beneficial Soil Fauna	Poor - None			
(per 20cm cube of soil)	Mediocre - 1-3 Species			
	Good - 4 or More Species			
Litter Decomposition	Poor - <50% Callico Decay, None			
(callico decay/visual	Mediocre - 50 - 75% Callico Decay, Some			
decomposition activity	Good - >75% Callico Decay, Lots			
Dung Beetles	Poor - >1 Month, None			
(dung breakdown,	Mediocre - >1 Week, a Few			
beetle and holes)	Good - Within a Week, Lots			

Score:

Percent:

Soil Health Assessment

Date:

Inicators	Parameters	Poor	Medium	Good
	Poor - Less Than 15cm			
Topsoil Depth	Mediocre - 15-30cm			
	Good - Greater Then 30cm			
	Poor - Light Colour			
Topsoil Colour	Mediocre - Inbetween Colour			
	Good - Dark Colour			
	Poor - Less Than 10cm			
Bulk (80%) Root Depth	Mediocre - 10-20cm			
	Good - More Than 20cm			
	Poor - Mostly Large Clods or Loose Soil			
Structural Appearance	Mediocre - Similar Portions of Both			
	Good - Mostly Friale, Round, Aggregates			
	Poor - Under 5 or Above 8.5			
рН	Mediocre - 5-6 or 7.5-8.5			
	Good - Between 5 and 6			
	Poor - Greater Than 300PSI			
Compaction	Mediocre - 200-300PSI			
	Good - Less Than 200PSI			
	Poor - Less Than 25mm/hr			
Water Infiltration	Mediocre - 25-100mm/hr			
	Good - Greater Than 100mm/hr			

Score:

Percent:

Laboratory Analysis:

Pasture Analysis

- Dry Matter Cuts
- Feed Analysis
- Leaf Tissue/Sap Tests

Microbiology Assessment

- Microscopy Microbiology Analysis
- Soil Microbiology Tests DNA, Enzyme, Respiration

Soil Testing

- Organic Matter
- Carbon:Nitrogen
- Available Nutrients
- pH, CEC etc...

Collecting Samples

Dry Matter

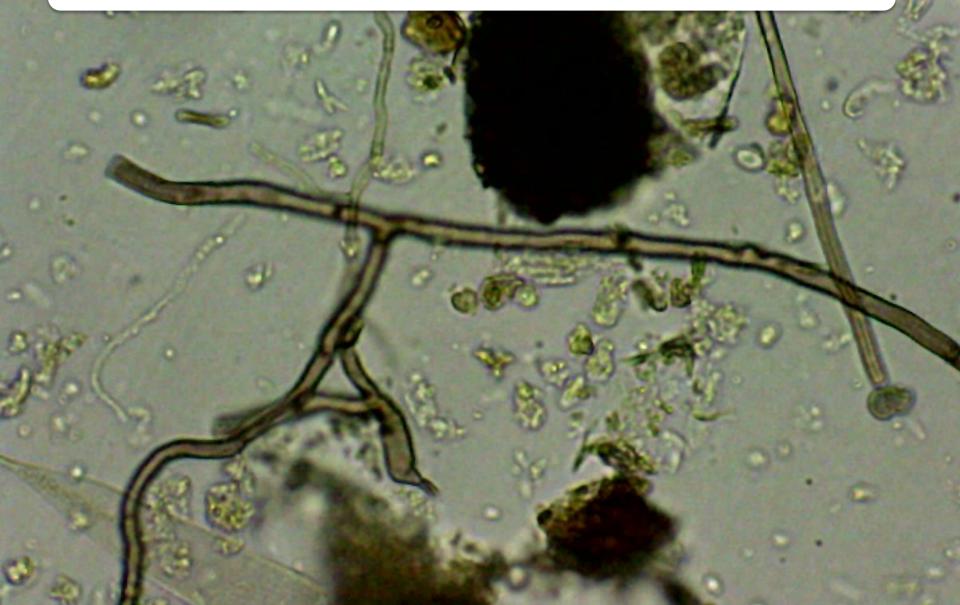
Site	Treatment	cut#	dry wt (g)	DM yield (kg/ha)	Value (\$/ha) @)\$200/t
Kate	Cover Crop	5	110.6	2212	\$	442.40
Kate	Pasture Control	3	58.6	1953	\$	390.67
Brett	Cover Crop	8	110.2	1378	\$	275.50
Brett	Pasture Control	4	78.5	1963	\$	392.50
Ecovillage	Cover Crop	5	130.8	2616	\$	523.20
Ecovillage	Pasture Control	5	36.8	736	\$	147.20

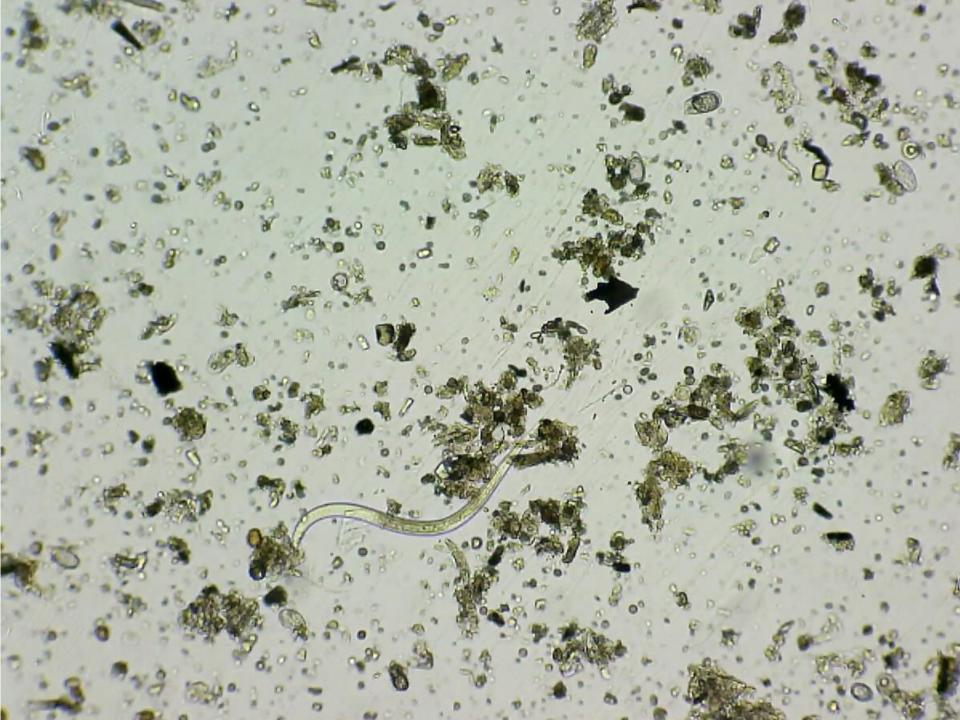
Feed Analysis

DATE OF ISSUE: 4/08/22

REPORT NO: R22-01105-[R00]

ANALYSIS RESULTS								
			1	2	3	4	5	6
Test Description	LOR	UNITS	Kate Crop	Kate Pasture	Brett Crop	Brett Pasture	Eco Crop	Eco Pasture
Dry Matter	0.5	%	N/A	N/A	N/A	N/A	N/A	N/A
Moisture		%	N/A	N/A	N/A	N/A	N/A	N/A
Neutral Detergent Fibre - NIR	10	%	53	54	47	51	49	48
Acid Detergent Fibre - NIR	4	%	29	28	25	25	27	29
Crude Protein - NIR	2	%	14.3	16.7	21.3	14.2	11.6	13.0
Inorganic Ash - NIR	3	%	10	11	11	9	8	11
Organic Matter - NIR		%	90	89	89	91	92	89
DMD	39	%	67	65	72	71	71	58
DOMD	38	%	63	64	68	69	67	60
Calculation of ME	4.3	MJ/kg DM	9.8	9.9	10.9	11.0	10.5	9.1
WSC - NIR	4	%	8.4	5.6	6.5	12.5	15.2	<4.0
AFIA Hay and Silage Grade			NO GRADE	NO GRADE	NO GRADE	NO GRADE	NO GRADE	NO GRADE


Leaf Sap and Tissue Testing


Mineral		Current Level	Optimum			
Total Sugars	%	3,4	0,7 - 3,4	1		-
	%	2,3		2		
рН		6,6	6,2 - 6,6	1		- I
рп		6,0	0,2 - 0,0	2		-
						I
EC	mS/cm	14,7	13,6 - 17,1	1		
	mS/cm	16,2		2		
K - Potassium	ppm	5920	5800 - 7650	1	L	
it rotussium	ppm	3248	5666 7656	2		
						1
Ca - Calcium	ppm	507	535 - 965	1 2		
	ppm	1349		2		
K / Ca		11,67		1		
,		2,41		2		
						<u> </u>
Mg - Magnesium	ppm	259	200 - 400	1 2		
	ppm	528		2		
Na - Sodium	ppm	835	26 - 178	1		
	ppm	1908		2		
				1		1
NH4 - Ammonium	ppm	197	210 - 625	2		
	ppm	383		2		
NO3 - Nitrate	ppm	<20	< 350	1		1
	ppm	<20		2		i
				1		1
N in Nitrate	ppm	<5	< 79	2		
	ppm	<5		2		
N - Total Nitrogen	ppm	2367	1870 - 3670	1		
	ppm	2735		2		i
				1		1
Cl - Chloride	ppm	3173	630 - 1700	2		
	ppm	5126		2		
S - Sulfur	ppm	411	280 - 580	1		1
	ppm	635		2		
				1		
P - Phosphorus	ppm	568	280 - 520	2		
	ppm	465		2		
Si - Silica	ppm	21,6	38,6 - 67,4	1		
	ppm	46,6	, ,	2		i
				1		1
Fe - Iron	ppm	2,61	2,45 - 5,05	2		
	ppm	2,22		-		
Mn - Manganese	ppm	3,24	2,60 - 6,90	1		1
0	ppm	5,69		2		i
				1		1
Zn - Zinc	ppm	2,92	1,55 - 3,10	2		
	ppm	5,65				I
B - Boron	ppm	0,56	0,60 - 1,70	1		
	ppm	0,86		2		
Cu. Connor				1		1
Cu - Copper	ppm	0,88	0,50 - 0,95	2		
	ppm	2,44				1
Mo - Molybdenum	ppm	0,22	0,10 - 0,35	1		
-	ppm	0,21		2		
Al. Al				1	1	
Al - Aluminium	ppm	<0,50		2		
	ppm	1,41		-		

Consult your advisor for appropriate fertilizer recommendations.

Because NovaCropControl has no effect and / or no control over the sampling, NovaCropControl accepts no liability for adverse effects as a result of its analysis or advice provided.

Microscope Microbiological Analysis

Name: YLAD

Analysis no.: 1239-1 Date: 24-08-16

Key Microbe Groups

Sample: Compost

Group		(mg/kg)	Useful indicators		
	Yours	Guide		Yours	Guide
Total microorganisms	320.1	50.0	Microbial diversity	72.8	80.0
Total bacteria	47.1	15.0	Fungi : Bacteria	5.7	2.3
Total fungi	267.3	33.8	Bacterial stress	0.5	< 0.5
Bacteria			Compost maturity	98.3	80.0
Pseudomonas	8.108	1.000	Disease suppression	100.0	80.0
Actinomycetes	1.266	1.000	Nutrients held in microbes	Concentrat Yours	ion (mg/kg) Guide
Gram positive	25.984	4.000	Nitrogen (N)	18.084	3.450
Gram negative	21.100	11.000	Phosphorus (P)	9.603	1.500
Methane oxidisers	BDL*	0.500	Potassium (K)	3.201	0.500
Sulphur reducers	BDL*	< 0.005	Sulphur (S)	3.201	0.500
True anaerobes	1.122	< 0.005	Calcium (Ca)	3.201	0.250
Eukaryotes			Magnesium (Mg)	3.201	0.250
Protozoa	5.719	1.250	Carbon (C)	146.687	22.688
Mycorrhizal fungi (including VAM)	27.716	10.000	Poor Fair		Good
Comments			Key		

Comments

Total microbial biomass was very good. Biomasses of other key desirable microbial groupswere also very good, including Mycorrhizal fungi (VAM) and Protozoa. VAM fungi require a living plant host to survive, so their presence here is a plus. Protozoa often appear after composts have aged for some time, and their presence here is an indication of maturity. The Fungi to Bacteria ratio was elevated compared to the guide, but this may be advantageous if the aim was to produce a fungi-dominated compost. Microbial diversity was good. True anaerobes were elevated, which may be indicative of lack of aeration or excessive watering. These results indicate that this compost would be an excellent amendment, particularly to soils with low fungi.

Explanations

The Microbe Wise test measures the biomasses of key microbial groups directly from your sample. It uses molecular ('DNA type') technology to analyse the unique cell membrane 'fingerprint' of each microbe type to identify and quantify key groups important to compost and soil processes. This method is more accurate and precise than other methods, such as direct microscopy or plate culture, because it uses chemical extraction to remove the maximum amount of microbial material from the sample and is repeatable to 0.01% between replicate analyses. It measures organisms that are alive or recently dead (within a few days). Always compare your results with a control sample. Guide values are included as a help, but because a large number of factors affect microbiology the guide levels may not be optimal for your specific conditions. Visit www.microbelabs.com.au for more information. Disclaimer

Analysis by Microbiology Laboratories Australia Pty Ltd ACN 145 073 481. The information in this report should be used under consideration of particular production conditions. The guide levels are derived from published data and ongoing research contrided out by Microbiology Laboratories Australia. They are intended as a general guide only and to not take into account your specific conditions. Comparison of results with those obtained using other methods may be inaccurate, as accurate interpretation relies on specific sampling and analysis methods. Microbiology Laboratories Australia and its employees or agents will not be liable for any loss or damage arising from the use of the information supplied in this report. Please seek specific guidance and recommendations from a qualified agriculture professional.

HANEY SOIL ANALYSIS REPORT

7 samples supplied by Terry Young on 05/05/2023. Lab Job No.P0363 Analysis requested by Terry Young. Your Job: Soil samples

276	Youngs Road	Samp l e 7 Y19-W	AVERAGE		
			Crop:	N/G	(120 random samples)
	Test	Parameter	Client: Method reference	TRY P0363/7	samples)
		Haney Soil Health Score	Calculation: (Solvita CO ₂ /10) + (Total Water Extractable Carbon/100) + (Total Water Extractable Nitrogen/10)	14	8.2
	Solvita	Microbial Respiration (mg/kg CO ₂)	Solvita CO ₂ Burst	102	44
		Water Extractable Organic Carbon (mg/kg C)	Shimadzu TOC-L	143	185
		Water Extractable Nitrogen (mg/kg N)	Shimadzu TNM-L	27	20
		Water Extractable Nitrate (mg/kg N)		20	5.4
	Water	Water Extractable Ammonium (mg/kg N)	Haney 2010 FIA (Water Extract)	1.6	2.0
	Extraction	Organic Carbon: Nitrogen ratio (C:N ratio)	Calculation: Total Water Extractable Carbon:Total Water Extractable Nitrogen	5.2	9.5
		Inorganic Nitrogen (mg/kg N)	Calculation: Water extractable Nitrate + Ammonium	22	7.4
		Organic Nitrogen (mg/kg N)	Calculation: Total Water Extractable Nitrogen - Inorganic Nitrogen (Nitrate + Ammonium)	5.3	13
		Calcium (mg/kg)		446	453
		Magnesium (mg/kg)		84	123
		Potassium (mg/kg)		104	87
		Sodium (mg/kg)		73	62
		Sulfur (mg/kg)		12	30
		Zinc (mg/kg)	Haney 2010 ICP-OES (H3A-2 Extract)	2.9	3.1
	Haney Extraction	Manganese (mg/kg)		3.4	17
		iron (mg/kg)		19	314
		Copper (mg/kg)		0.2	1.2
		Aluminum (mg/kg)		37	577
		H3A-2 Nitrate (mg/kg N)	Happy 2010 EIA (H2A 2 Evitront)	13.7	7.3
		H3A-2 Ammonium (mg/kg N)	Haney 2010 FIA (H3A-2 Extract)	2.7	9.5
		Total Available Phosphorous (mg/kg)	Haney 2010 ICP-OES (H3A-2 Extract)	111	25
		рН _w	Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.01	
		Electrical Conductivity (dS/m)	Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.145	
		Labile Carbon (%)	Blair 1995 - 0.333 M Potassium Permanganate	0.35	
	Other	Total Carbon (% C)	Inhouse C4e (LECO Teumee Angluse -)	1.12	
		Total Nitrogen (% N)	Inhouse S4a (LECO Trumac Analyser)	0.12	
		Estimated Organic Matter (% OM)	Calculation: Total Carbon x 1.75	2.0	
		Carbon/Nitrogen Ratio	Calculation: Total Carbon/Total Nitrogen	9.2	

Notes:

1. All results presented as a 40 °C oven dried weight. Soil sieved and lightly crushed to < 2 mm.

 Methods from Haney RL, Haney EB, Hossner, LR and Arnold JG. 2010a. Modifications to the new soil extractant H3A-1: a multinutrient extractar Communications in Soil Science and Plant Analysis . 41(12):1513–1523. This method uses the modification to H3A-1 and is referred to as H3A-2

3. Analysis conducted between sample arrival date and reporting date.

4. This report is not to be reproduced except in full.

5. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions.

These Terms and Conditions are available on the EAL website: SCU.edu.au/eal/t&cs, or on request.

6. This report was issued on 22/05/2023.

Useful links/References

- <u>https://soils.vidacycle.com/soil-tests/</u>
- <u>https://cdn.environment.sa.gov.au/landscape/do</u> <u>cs/ep/rapid assessment of soil health rash ma</u> <u>nual.pdf</u>
- <u>https://www.bioagrinomics.com/visual-soil-assessment</u>
- <u>https://ecovineyards.com.au/soil-health-indicators-for-australian-vineyards/</u>